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Abstract

In this paper, we study the problem of eliciting preferences of
agents in the house allocation model. For this we build on a
recent model of Hosseini et al. (2021)[AAAI’21] and focus
on the task of eliciting preferences to find matchings which
are necessarily optimal, i.e., optimal under all possible com-
pletions of the elicited preferences. In particular, we follow
the approach of Hosseini et al. (2021) and investigate the elic-
itation of necessarily Pareto optimal (NPO) and necessarily
rank-maximal (NRM) matchings. Most importantly, we an-
swer their open question and give an online algorithm for elic-
iting an NRM matching in the next-best query model which
is 3

2
-competitive, i.e., it takes at most 3

2
as many queries as

an optimal algorithm. Besides this, we extend this field of re-
search by introducing two new natural models of elicitation
and by studying both the complexity of determining whether
a necessarily optimal matching exists in them, and by giving
online algorithms for these models.

1 Introduction
One of the key settings in the area of matching under prefer-
ences is the so-called house allocation or assignment prob-
lem. In this problem we are given two sets, a set of agents
A and a set of houses H with agents having preferences
over houses. This simple setting has found multiple real
life applications, for instance in the allocation of people
to jobs (Hylland and Zeckhauser 1979), papers to review-
ers (Garg et al. 2010), or students to student dorms (Chen
and Sönmez 2002). Over the years, various solution con-
cepts have been designed for the house allocation problem,
for instance Pareto optimality (Abdulkadiroğlu and Sönmez
1998) (Abraham et al. 2004), popularity (Abraham et al.
2007) or rank-maximality (Irving et al. 2006).

However, most of the work on house allocation problems
assumes the preferences of the agents to be given in their
entirety, while in many real-world applications only partial
preferences might be known and eliciting complete rankings
from agents might be costly.

As an expository (non-serious) example (based on a real
life story), imagine a group of AI researchers meeting in
their office kitchen to celebrate the acceptance of multiple
papers. For this occasion, the researchers decide to eat some
ice pops. However, after opening the freezer, they notice that
only one ice pop of each kind is left, causing discussion on

how to fairly divide the ice. Quickly, the group agrees that
a rank-maximal allocation would be the fairest they could
currently think of. Now there is just one problem left, due
to time constraints and hunger, the researchers do not want
to all give their whole ranking to each other. Instead, they
agree that they should start off with naming the ice pop they
like the most. But how should they continue after this, and
who should be asked for their second favorite ice?

To deal with this problem Hosseini, Menon, Shah, and
Sikdar (2021) initiated the study of finding matchings that
are necessarily optimal by eliciting partial preferences from
the agents. In their model Hosseini et al. (2021) use so-called
top-k preferences in which each agent has only elicited a
prefix of their true preferences. To obtain these preferences,
they introduce the next-best query model, in which agents
can be asked to reveal the top house they have not revealed
yet. The goal in this setting is to ask as few queries as possi-
ble in order to find a matching that is necessarily optimal,
i.e., optimal under every possible linear extension of the
top-k preferences. The performance of such an elicitation
algorithm is then measured in terms of the so-called com-
petitive ratio, i.e., the ratio between the number of queries
of the algorithm and the number of queries of an optimal
algorithm with knowledge of the complete preferences. As
their main results, Hosseini et al. (2021) gave an O(

√
n)-

competitive elicitation algorithm for finding a necessarily
Pareto optimal matching, showed that no elicitation algo-
rithm for finding a necessarily Pareto optimal matching can
be o(

√
n)-competitive, and proved that no elicitation algo-

rithm for finding a necessarily rank-maximal matching can
be 4

3−ε-competitive for any ε > 0. Further, they conjectured
that an online algorithm with a constant competitive ratio
for eliciting necessarily rank-maximal matchings is possi-
ble, and left this as their most important open question.

Our results
We contribute to this line of research in the following way.
First, we confirm the conjecture of Hosseini et al. (2021)
and show that an online algorithm with a 3

2 -competitive ra-
tio for eliciting a necessarily rank-maximal matching does
exist in the next-best query model. Further, we show that
this algorithm is optimal and no online-algorithm can have
a competitive ratio better than 3

2 . Besides this, our many fo-
cus lies on the hybrid-query model in which agents can be
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next-best set-compare hybrid-query
LB UB LB UB LB UB

Pareto optimal Ω(
√
n)† O(

√
n)† 1 1 Ω(n

1
3 ) O(n

1
3+ε)

Rank-maximal 3
2

3
2

3
2 O(n) 3

2 6

Table 1: Overview over the lower (LB) and upper bounds
(UB) on the possible competitiveness of online algorithms
derived for eliciting Pareto optimal and rank-maximal
matchings in the different query models. Results marked
with † were shown by Hosseini et al. (2021).

asked to either elicit a house of a given rank or to return the
rank of a given house. In this model, we give an online al-
gorithm with a constant competitive ratio for eliciting a nec-
essarily rank-maximal matching, as well as, for any ε > 0,
an O(n

1
3+ε)-competitive algorithm for eliciting a necessar-

ily Pareto optimal matching which almost meets the lower
bound of Ω(n

1
3 ). To add on to this, we also give a poly-

nomial time algorithm for determining whether an NRM
matching exists and show that the same problem becomes
NP-complete for Pareto optimal matchings.

Finally, we also introduce the set-compare model in
which agents can be asked to give their top-choice element
out of a set. Here, we show that this model is already power-
ful enough to obtain a 1-competitive elicitation algorithm
for Pareto optimal matchings. We show that determining
whether an NPO matching under this preference model ex-
ists, is NP-complete as well, and that the 3

2 lower bound
obtained for the next-best model is also valid for the set-
compare model. For a brief overview over the competitive-
ness bounds derived in this paper, we refer the reader to Ta-
ble 1.

Related Work
The house allocation or assignment problem is one of
the key matching settings in both computer science and
economics. Besides the aforementioned classical works of
for instance (Bogomolnaia and Moulin 2001; Hylland and
Zeckhauser 1979; Shapley and Scarf 1974) recent papers
on house allocation include work on envy-free house al-
location (Gan, Suksompong, and Voudouris 2019; Beynier
et al. 2019) on diversity constrains (Benabbou et al. 2018),
incorporating cardinal queries in ordinal preferences (Ma,
Menon, and Larson 2021) or closely related to us on Pareto
optimal house allocation under probabilistic uncertainty
(Aziz, Biró, de Haan, and Rastegari 2019).

Rank-maximal matchings were first introduced by Irv-
ing (2003) and were subsequently studied and character-
ized by Irving et al. (2006). Following these two initial pa-
pers, several works studied algorithmic aspects of various
variants of the problem (Kavitha and Shah 2006; Michail
2007; Paluch 2013; Ghosal, Nasre, and Nimbhorkar 2019;
Nasre, Nimbhorkar, and Pulath 2019). Besides this Be-
lahcène, Mousseau, and Wilczynski (2021) studied rank-
maximality (and popularity) in a variant of the house allo-
cation problem, where not only the allocation of the houses,
but also the selection of the allocated houses, i.e., which

houses are matched and which are unmatched, matter. Very
recently Aziz and Sun (2021) used rank-maximality and al-
gorithmic techniques of Irving et al. (2006) for the school
choice problem with diversity constraints.

Besides the aforementioned works by Hosseini et al.
(2021); Aziz et al. (2019) uncertainty in matching markets
has been incorporated in several papers in the literature on
two-sided matchings for instance by Rastegari et al. (2013);
Liu et al. (2014). Besides this, Drummond and Boutilier
(2014) studied preference elicitation for the stable matching
problem or (Genc et al. 2017; Mai and Vazirani 2018; Chen,
Skowron, and Sorge 2019) who studied stable matchings un-
der various aspects of robustness, e.g., stable under proba-
bilistic perturbations or after a certain number of swaps in
the input rankings. Finally, very closely related to our work
is also the study of possible and necessary winners in com-
putational social choice, where given partial preferences of
voters, a candidate winning every election or some election
is required. See (Lang 2020) for a recent survey on this topic.

2 Preliminaries
For a, b ∈ N let [a, b] = {a, a+ 1, . . . , b} and [a] = [1, a].

Throughout the paper, we let A = {a1, . . . , an} denote
our set of agents and H = {h1, . . . , hn} our set of houses.
A matching in our setting is simply a subset M ⊆ A × H
such that no agent and no house appear in more than one
pair. If (ai, hj) ∈ M for some agent ai ∈ A and house
hj ∈ H we say that ai is matched to hj .

Further, we assume that each agent ai ∈ A has a strict
preference list �i over all houses in H . If hj �i hk for two
houses hj and hk we say that ai prefers hj to hk. When hj
appears in the kth place in the preference list of ai we say
that the rank of hj in the preference list of ai is k and write
rank(ai, hj) = k. For a given subset H ′ ⊆ H and agent ai,
we call maxi(H

′) the maximum element of H ′ with regard
to�i, i.e., the house in H ′ which ai likes the most. We refer
to the collection of preference lists as a preference profile�.

We are now ready to define the two problems we investi-
gate in our paper.

Pareto optimality. We begin with the classical notion
of Pareto optimal matchings (Abdulkadiroğlu and Sönmez
1998). Given a matching M , we say that another matching
M ′ dominates M if

• for every agent ai ∈ A it holds that M ′(ai) �i M(ai) or
M ′(ai) = M(ai) ;

• for at least one agent ai ∈ A it holds that M ′(ai) �i

M(ai).

Now, a matchingM is Pareto optimal if there is no matching
M ′ which dominates M .

Rank-maximality. As our second optimality concept we
consider rank-maximality. For a given matching M let
rMl := |{ai ∈ A | rank(ai,M(ai)) = l}| for any l ∈ [n].
Now a matching is rank-maximal if and only if there is no
other matching M ′ and l ∈ [n] such that rMk = rM

′

k for all
k ∈ [l − 1] and rMl < rM

′

l , i.e., the vector (rM1 , . . . , rMn )
is lexicographically maximal among all matchings. If such



a matching M ′ were to exist, we also say that M ′ rank-
dominates M . Thus, a matching M is rank-maximal if it
first maximizes the number of agents matched to their first
choice, subject to that maximizes the number of agents
matched to their second choice and so on.

Elicitation Protocols. Now, we turn to the three different
elicitation protocols we study in our work. For the definition
of the models, we assume that we are given a fixed instance
of the house allocation problem with preference profile �.
• First, we investigate the next-best query model as defined

by Hosseini et al. (2021). In this model, we are only al-
lowed to ask one type of query. Namely, we can query
a single agent, who will return the house they rank the
highest, which has not been revealed yet, i.e., if this is
the kth query asked to the agent, the query returns the
house ranked kth by the agent in �. For any agent a ∈ A
we denote such a query as Q(a) and we refer to the set
of agents revealed to by A as rev(a).

• Next we study the hybrid-query model. Here we can ask
two types of queries. Firstly, a rank queryQ(ai, k) for an
agent ai ∈ A and k ≤ n returns the house hj ∈ H with
rank(ai, hj) = k and secondly a house query Q(ai, hj)
for an ai ∈ A and a house hj ∈ H returns rank(ai, hj).
Similarly to the next-best query model, for any a ∈ A we
refer to rev(a) as the set of houses h ∈ H for which we
know rank(a, h).

• As our third model, we study a less restricted version of
the next-best query model, which we call the set-compare
query model. Here a queryQ(ai, H

′) consists of an agent
ai ∈ A and a subset of houses H ′ ⊆ H and returns
maxi(H

′), i.e., the house ai likes best in H ′. This model
is inspired by recent works of learning rankings in the
area of machine learning (Chen, Li, and Mao 2018; Ren,
Liu, and Shroff 2019; Saha and Gopalan 2019, 2020).

For any of the three aforementioned query models, let
Q1, . . . ,Qk be a sequence of queries with answers
α1, . . . , αk (we also refer to this as partial preferences
throughout the paper). We call a preference profile � con-
sistent with these queries if the output of these queries
on � would be α1, . . . , αk as well. A matching M is
now necessarily Pareto optimal(NPO) (necessarily rank-
maximal(NRM)) for a given sequence of queries if M is
Pareto optimal (rank-maximal) for all preference profiles
consistent with these queries. The goal is now to design an
online-algorithm which can ask queries according to one
of the three aforementioned models and outputs a match-
ing that is either necessarily Pareto optimal or necessarily
rank-maximal according to the queries the algorithm asked.
We assume that the online-algorithm only has access to the
agents, houses and the answers to the queries, but not to the
underlying preferences themselves.

In order to compare the performance of these algorithms,
we measure their competitive ratio in comparison to an op-
timal algorithm which also knows the underlying preference
profile. For any instance, such an optimal algorithm asks the
minimum number of queries, after which a necessarily opti-
mal matching with regard to these queries, asked by the op-
timal algorithm, can be given. We call an online algorithm

α-competitive if for any preference profile � the online al-
gorithm asks at most α ·OPT� queries, where OPT� is the
number of queries of the optimal algorithm on this instance.

Finally, we note that partial preferences in the next-best
query model can be equivalently expressed by an incomplete
preference profile �′ (with induced rank function rank′),
in the hybrid-query model, by an incomplete rank function
rank′ (with induced partial preference profile �′) in which
each agent only lists ranks for a subset of houses, and in the
set-compare model, by having a partial order �′i for each
agent ai.

3 Pareto-optimal Matchings
We start off with Pareto-optimal matchings. Here, Hos-
seini et al. (2021) managed to give an asymptotically tight
O(
√
n)-competitive elicitation algorithm for the next-best

query model. As our main results, we first give a 1-
competitive algorithm for eliciting NPO matchings in the
set-compare model, followed by a classification of NPO
matchings in the hybrid-query model together with an
O(n

1
3+ε)-competitive elicitation algorithm for any ε > 0.

Before we turn to our elicitation algorithms, we quickly
recap the famous serial dictatorship mechanism (Abdulka-
diroğlu and Sönmez 1998) and its relation to Pareto optimal
matchings.

Definition 1 (Serial Dictatorship Mechanism). The serial
dictatorship mechanism takes as input a permutation σ of
the agents together with a preference profile � and returns
a matching SD�(σ) which iteratively matches agent σ(i) to
their most preferred house in � not matched to by an agent
in σ(1), . . . , σ(i− 1).

As shown by Abdulkadiroğlu and Sönmez (1998) the se-
rial dictatorship mechanism is already enough to classify all
Pareto optimal matchings.

Theorem 1 (Abdulkadiroğlu and Sönmez (1998)). Given
a preference profile � a matching M is Pareto optimal if
and only if there is a permutation of the agents σ such that
M = SD�(σ).

This immediately brings us to the set-compare query
model where we can show that this model is already suf-
ficient to simulate the serial dictatorship mechanism, which
allows us to construct a 1-competitive algorithm.

Theorem 2. There exists a 1-competitive algorithm in the
set-compare model for computing a necessarily Pareto-
optimal matching.

Proof. Our algorithm is a simple adaption of the serial dic-
tatorship mechanism to the set-compare model. It works it-
eratively by constructing a matching M . In iteration i let Hi

be the set of houses already matched by M in previous it-
erations. Then in iteration i we query h := Q(ai, H \ Hi)
and add (ai, h) to M . Note that we do not need to query in
iteration n since only one agent/house pair is left. It is easy
to see that for all possible preference extensions, in itera-
tion i agent ai is matched to the currently unmatched house
they prefer the most. Therefore, this algorithm simulates the



serial dictatorship mechanism and thus produces a (neces-
sarily) Pareto optimal matching. Furthermore, the algorithm
only uses n−1 queries and is therefore 1-competitive, since
at most 1 agent can be left unqueried by the optimal algo-
rithm.

We further note that this proof can also be generalized
to the setting where the set H in each query can contain at
most k houses, e.g., if k = 2 this would mean that only
pair-wise comparisons could be asked to the agents. For a
proof sketch, we refer to the full version. For the hybrid-
query model, we start off with the complexity of determining
whether an NPO matching exists. While it is still polynomial
time checkable if a given matching is NPO, we also show
that it is NP-complete to determine the existence of an NPO
matching.

Theorem 3. Given a matching M and partial preferences
rank′ in the hybrid-query model, it can be determined in
polynomial time whether M is necessarily Pareto optimal.

Proof. This follows fairly simply by adapting the algorithm
of Hosseini et al. (2021) for determining whether a match-
ing M is NPO in the next-best model. We create an aux-
iliary directed graph G = (A,E) in which we add an arc
from agent ai to agent aj if it is possible for ai to pre-
fer M(aj) to M(ai). Then a cycle in G implies that a
matching dominating M exists in a preference extension
of rank′. To be more precise, we add an edge from ai to
aj if M(ai),M(aj) ∈ rev(i) and rank′(ai,M(aj)) <
rank′(ai,M(ai)); or if M(ai) ∈ rev(i),M(aj) /∈ rev(i)
and there is a rank k < rank(ai,M(ai)) with no revealed
house for ai; or if M(ai) /∈ rev(i),M(aj) ∈ rev(i) and
there is a rank k > rank(ai,M(aj)) with no revealed house
for ai; or if M(ai),M(aj) /∈ rev(i). It is easy to see that
there is a preference profile consistent with the partial pref-
erences in which ai prefers M(aj) to M(ai) if and only if
there is an edge from ai to aj . Thus, a cycle in G would in-
deed imply that we could extend the preferences in such a
way, that we could construct a matching M ′ dominating M ,
by swapping the houses along the cycle. On the other hand,
if a matching M ′ dominates M in some preference exten-
sion, there has to be a cycle of agents a1, . . . , ak, ak+1 = a1
with agent ai preferring M(ai+1) to M(ai) for this prefer-
ence extension and thus also forming a cycle in G.

This algorithm also translates into an algorithm for deter-
mining whether a matching M is necessarily Pareto optimal
in the set-compare model, again by adding edges from one
agent to another, if there is any extension where one agent
could prefer the house of the other agent.

Corollary 1. Given a matching M and partial preferences
�′ in the set-compare model it can be determined in polyno-
mial time whether M is necessarily Pareto optimal.

Using the simple algorithm in Theorem 3 we can also give
a succinct classification of necessarily Pareto optimal match-
ings in the hybrid-query model using the Serial Dictatorship
mechanism.

Lemma 1. Given partial preferences rank′ in the hybrid-
query model a matching M is necessarily Pareto optimal
if and only if there is a permutation σ of A such that for
all possible preference extensions � of rank′ it holds that
M = SD�(σ) .

Proof. Let M be an NPO matching and G the graph con-
structed in Theorem 3 for M . Since M is NPO the graph G
is acyclic. Therefore, there exists a topological ordering of
G. Let σ be a reversed topological ordering of G. Then for
every i ∈ [n] and every possible preference extension (and
thus also in�), the agent σ(i) could only possibly prefer the
houses already matched to the agents σ(1), . . . , σ(i − 1) if
they were assigned their partner in M . Therefore, SD�(σ)
would set SD�(σ)(σ(i)) = M(σ(i)). Thus, by induction,
we get that SD�(σ) = M .

This however does not translate to an algorithm for find-
ing an NPO matching or determining that one exists. To
show the NP-completeness of this problem we reduce from
the NP-complete (2,2)-E3-SAT problem, (Berman, Karpin-
ski, and Scott 2004). In an instance of the (2,2)-E3-SAT
problem we are given a set of variables X and a set of
clauses C over X with each clause in C having length ex-
actly 3 such that each variable in X appears exactly twice in
negated form and twice in positive form in C.

Theorem 4. Given partial preferences rank′ in the hybrid-
query model it is NP-complete to determine whether an
NPO matching exists.

The proof of this theorem and all further missing proofs
are in the appendix. Using this result, we can also show
that the same problem is NP-complete in the set-compare
model. For this we simply show how to, given an instance
in the hybrid-query model, construct an instance in the set-
compare model, such that a matching is NPO in the former
model if and only if is also NPO in the latter.

Theorem 5. Given partial preferences �′ in the set-
compare model, it is NP-complete to determine whether a
necessarily Pareto-optimal matching exists.

Even though it is inherently hard to find an NPO matching
given partial preferences in the hybrid query model, we can
still give an elicitation algorithm improving upon the com-
petitive ratio for the next-best query model. Before proving
this, we give a useful lower bound on the number of queries
asked to an agent by using the serial dictatorship characteri-
zation of NPO matchings.

Lemma 2. Let rank′ be partial preferences and M be an
NPO matching in the hybrid-query model. Then there exists
a permutation of agents σ such that for all i ∈ [n] agent σ(i)
has revealed at least min(rank′(σ(i),M(σ(i))), n − i) of
their preference list if M(σ(i)) ∈ rev(σ(i)). If M(σ(i)) /∈
rev(σ(i)) the agent must have revealed at least n−i houses.

Proof. By Lemma 1 we know that there has to be a permu-
tation of agents σ such that M = SD�(σ) for all possi-
ble preference extensions � of rank′. Then since for every
preference extension SD�(σ) matched σ(i) to M(σ(i)) we



Algorithm 1: Elicitation algorithm for Pareto optimal match-
ings in the hybrid query model
Input: Set of agents A, set of houses H , parameter c0 > 1

3 .
Output: A necessarily Pareto optimal match-
ing.

1: set E ← ∅,M ← ∅, j ← 0
2: for i = 1, . . . , n do
3: for all a ∈ A do
4: E ← E ∪ {{a,Q(a, i)}}
5: end for
6: M ← maximum size Pareto-optimal matching in

(A ∪H,E)
7: if i = dncje then
8: if |M | ≥ n−

⌈
n(cj+1)/2

⌉
then

9: break for loop
10: else
11: j ← j + 1, cj ← (3cj−1 + 1)/2 + c0 − 1
12: end if
13: end if
14: end for
15: H ′ ⊆ H ← subset matched by M
16: A′ ⊆ A← subset matched by M
17: for all a ∈ A \A′ do
18: h← arg minh∈H\H′ Q(a, h)

19: M ←M ∪ {{a, h}}
20: H ′ ← H ′ ∪ {h}
21: end for

know that all houses matched to σ(i + 1), . . . , σ(n) must
be ranked lower than M(σ(i)) in all preference extensions.
Thus, we either know the preferences of all houses matched
to σ(i + 1), . . . , σ(n) and have thus revealed at least n − i
of the preference list of σ(i) or there is at least one house
matched to σ(i + 1), . . . , σ(n) we do not know the prefer-
ence of. Then we must have queried the preferences of all
houses ranked at least as high as M(σ(i)) thus requiring us
to reveal at least rank′(σ(i),M(σ(i))) houses in the prefer-
ence list of σ(i).

The crucial idea behind our Algorithm 1 for eliciting an
NPO matching is now as follows. Assume that we want to
construct an algorithm with competitive ratio nc for some
constant c > 0 and that we know that at least k agents must
be matched to a house of at least rank r with k ≥ r, for
instance by knowing that the maximum matching in the top-
r preferences has size n−k. Then by Lemma 2 we know that
at least k

2 agents must be asked at least min(r, k2 ) queries,
since at least k

2 of the agents matched to a house with a rank
of at least r must be listed between r and n− k

2 by σ. Thus,
we know that any optimal algorithm must ask at least Ω(kr)
queries which allows our online algorithm to ask O(nckr)
queries. The trick behind Algorithm 1 is now to choose these
values of c, k, and r appropriately. To give some further idea
behind the value of 1

3 we show that c0 > 1
3 implies that the

(cj) series in Algorithm 1 is increasing.

Lemma 3. The series (cj)j∈N with cj+1 = (3cj + 1)/2 +

c0 − 1 is increasing if c0 > 1
3 .

Using this Lemma, we can now turn to the correctness of
Algorithm 1.

Theorem 6. For any c > 1
3 Algorithm 1 is an O(nc0)-

competitive algorithm for eliciting a necessarily Pareto op-
timal matching in the hybrid-query model.

As an easy corollary, this implies that for any ε > 0, we
can reach a competitive ratio of O(n

1
3+ε). Further, we can

also show that this competitive ratio is almost asymptotically
optimal by showing that no online algorithm can be o(n

1
3 )-

competitive.

Theorem 7. There is no online algorithm in the hybrid-
query model for computing a necessarily Pareto optimal
matching with a competitive ratio of o(n

1
3 ).

This of course still leaves the possibility of an online al-
gorithm with a competitive ratio of Θ(n

1
3 ).

4 Rank-Maximal Matchings
In this section, we turn to the problem of eliciting rank-
maximal matchings. In their paper, Hosseini et al. (2021)
showed that no online algorithm for the rank-maximal
matching problem in the next-best query setting can be bet-
ter than 4

3 competitive. Here, we give an algorithm that is 3
2 -

competitive and improve the lower bound of Hosseini et al.
(2021) to 3

2 as well, thus showing that the competitive ratio
of our algorithm is tight. However, before defining this algo-
rithm, we first need to recap some results from the classical
work of Irving et al. (2006). First, we recall the definition of
the so-called Dulmage–Mendelsohn decomposition.

Theorem 8 (Irving et al. (2006), Manlove (2013)). Given a
bipartite graphG = (V,E) there exists a partition of V into
three sets O, E ,U such that

• Any maximum matching only contains edges between U
and U as well as between E and O.

• Any maximum matching matches every vertex in U and
in O.

• The cardinality of a maximum matching is |O|+ 1
2 |U|.

• There is no edge between E and E as well as between E
and U .

Further, it is shown by Irving et al. (2006) that E is the
set of vertices which can reach an unmatched vertex in any
maximum matching with an alternating path of even length,
vertices in O can reach an unmatched vertex with an alter-
nating path of odd length, and vertices in U cannot reach any
unmatched vertex using an alternating path. Using the Dul-
mage–Mendelsohn decomposition Irving et al. (2006) de-
fined the following iterative algorithm for finding a rank-
maximal matching. In each iteration i the algorithm main-
tains a graph Gi = (A ∪ H,Ei) and a matching Mi in G.
It is initialized with E0 = ∅,M0 = ∅,O0 = ∅ = U0 and
E0 = A ∪H . For each i = 1, . . . , n the algorithm

• adds all edges of rank i or less that have not been deleted
yet to Ei and computes a maximum matching Mi in
Gi = (A ∪H,Ei) by augmenting Mi−1;



Algorithm 2: Elicitation algorithm for rank-maximal match-
ings in the next-best model
Input: Set of agents A, set of houses H .
Output: A necessarily rank-maximal matching

1: U ← A {set of unfinished agents}
2: V ← H {set of available houses}
3: E ← ∅, M ← ∅, F ← ∅
4: if |A| = 2 then
5: let h1 = Q(a1), return {{a1, h1}, {a2, h2}}
6: end if
7: for i in 1, . . . n− 1 do
8: for all a ∈ U do
9: h← Q(a)

10: if h ∈ V and {a, h} /∈ F then
11: E ← E ∪ {{a, h}}
12: end if
13: end for
14: augmentM to be a maximum matching in (A∪H,E)

15: compute Dulmage-Mendelsohn decomposition
U , E ,O for M

16: If an agent a ∈ A is in U or O remove a from U
17: If a house h ∈ H is in U or O remove h from V
18: Add any edges between O,O and O,U to F and re-

move them from E
19: end for
20: return M

• computes a Dulmage–Mendelsohn decomposition
Ui, Ei,Oi for Gi

• deletes all edges incident to a node in Ui and Oi with a
rank greater or equal to i, as well as all edges connecting
either two nodes inOi or a node inOi with a node in Ui;

The key observations of Irving et al. (2006) are now that

Lemma 4. • Every rank-maximal matching in the in-
stance restricted to top-k preferences is a maximum
matching in Gk.

• Every Mk is a rank-maximal matching in the instance
restricted to top-k preferences.

Using these observations, we can now simulate the algo-
rithm of Irving et al. (2006) by tracking the set of forbidden
edges F , i.e., the set of edges deleted in the third step of
(Irving et al. 2006) in each iteration, and by not asking any
queries to an agent who has been in Ui orOi for any i ∈ [n].
Please refer to Figure 1 for an example of Algorithm 2 be-
ing executed. To get a good bound on the competitive ra-
tio of Algorithm 2 we observe a simple lemma based on
the Dulmage-Mendelsohn decomposition and its relation to
preferences of agents in a necessarily rank-maximal match-
ing. For a given house allocation instance and agent a ∈ A
let ra := mini∈[n] a /∈ Ei. It is easy to see that for any in-
stance, our algorithm asks exactly ra queries to a. We can
now show that the optimal algorithm must ask at least ra−1
queries to agent a if this agent is matched to a preference the
agent has revealed.

a1:h1, h4, h2, h3, h5

a2:h1, h2, h3, h4, h5

a3:h4, h1, h3, h2, h5

a4:h4, h5, h3, h2, h1

a4:h4, h5, h2, h3, h5

Preferences

a1

a2

a3

a4

a5

h1

h2

h3

h4

h5

Iteration 1

a1

a2

a3

a4

a5

h1

h2

h3

h4

h5

Iteration 2

a1

a2

a3

a4

a5

h1

h2

h3

h4

h5

Iteration 3

Figure 1: Exemplary run of Algorithm 2. The edges dis-
played are the edges in E at the end of each iteration. Ver-
tices in black are in E , vertices in green are in O and ver-
tices in red are in U . Edges in red are the edges added in
each iteration and dashed edges are matched by M in each
iteration(Of course other matchings would also be valid).

Lemma 5. Given a house allocation instance (A,H,�)
partial preferences�′ in the next-best query model and nec-
essarily rank-maximal matchingM for�′ it has to hold that
|rev(a)| ≥ ra − 1 for all agents matched to a revealed pref-
erence by M .

Proof. Towards a contradiction, we assume that there is
some agent a ∈ A with M(a) ∈ rev(a) and |rev(a)| <
ra − 1. Then since M is rank-maximal in all completions
of �′ and thus also in � we know that a ∈ Era−1. Hence,
there has to be an alternating path of even length ρ := a =
a1,M(a1), a2, . . . ,M(ak−1), ak in Gra−1 from a to an un-
matched agent ak. Since ak is unmatched in Gra−1 by M
we know that rank(ak,M(ak)) > ra − 1 in �.

Further, assume that there is some ai with i > 1 such that
rank(ai,M(ai−1)) > rank(ai−1,M(ai−1)). Then, since
ai−1 must be in Ej for all j ∈ [ra − 1] due to ρ , we
know that M(ai−1) must be in Orank(ai−1,M(ai−1)) which
in turn implies that {ai,M(ai−1)} is not an edge in Gra−1.
Thus, rank(ai,M(ai−1)) ≤ rank(ai−1,M(ai−1)) has to
hold in �. Further, we can extend �′ in such a way that
rank(a1,M(ak)) ≤ ra − 1, while keeping all other pref-
erences according to �. For these preferences, we can aug-
ment M with the path

a1,M(ak), ak,M(ak−1), ak−1, . . . a2,M(a1)

and get a matching that rank-dominates M ′ since
rank(ai,M(ai−1)) ≤ rank(ai−1,M(ai−1)), as well
as rank(a1,M(ak)) ≤ ra − 1, while previously
rank(ak,M(ak)) > ra − 1. Therefore, no agent a ∈ A
matched to a revealed preference can have less than ra − 1
of their preference revealed.

This simple lemma is in fact already sufficient to get a
constant upper bound of at most 3 on the competitive ra-
tio of Algorithm 2. To see this, consider the following. We
know from Lemma 5 and the fact that at most one agent
can be matched to an unrevealed preference and that all but
one agent are asked at least min(ra − 1, 1) queries by the
optimal algorithm and exactly ra queries by our algorithm.
Further, the agent matched to the unrevealed preference is
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Figure 2: Construction of Theorem 10 for k = 3 and special
agent a4. The basic preferences for ranks 1 and 2 are shown
on the left, with rank 1 edges in black and rank 2 edges in
red and the edge of the special agent in blue. The matching
on the right, is the rank-maximal matching.

asked at most n− 1 queries by our algorithm. Let A′ be the
set of agents matched to revealed preferences. Then, we can
bound the competitive ratio by∑

a∈A′(ra) + n− 1∑
a∈A′(min(ra − 1, 1))

≤
∑

a∈A′(ra + 1)∑
a∈A′(min(ra − 1, 1))

.

Since for any a ∈ A′ the term ra+1
min(ra−1,1) is at most 3,

this implies the upper bound of 3 on the competitive ratio.
However, we can improve upon this and can even show that
the algorithm is 3

2 -competitive.

Theorem 9. Algorithm 2 is a 3
2 -competitive algorithm for

eliciting a rank-maximal matching in the next-best query
model.

Further, we can show that this bound is tight (up to sub-
constant factors) by showing that for any ε > 0, no online
algorithm can have a competitive ratio better than 3

2 − ε.
Theorem 10. No online algorithm in the next-best query
model can achieve a competitive ratio better than 3

2 − ε for
any ε > 0.

Proof. Let k ≥ 2 be an integer and consider the following
instance with n = 2k+ 1. We start off with the basic prefer-
ences of the agents. Here for any i ∈ [k] (with the assump-
tion that 1 − 1 = k), we assume that the basic preference
of agent a2i−1 is h2i−1 � h2(i−1) � · · · � h2k+1 and the
basic preference of agent a2i is h2i−1 � h2i � · · · � h2k+1

with the preferences between the second and the last house
being arbitrary. Further, the basic preference of agent a2k+1

is h2k−1 � h2k � · · · � h2k+1 (just like for agent a2k). For
our adversarial instance, we assume that all but one agent
have their basic preference, with the one special agent in-
stead listing h2k+1 as their third preference. It is easy to
see that in such an instance, a rank-maximal matching must
match k agents to their first choice, k agents to their second
choice and the special agent to h2k+1, since the special agent
is the only one not listing h2k+1 last. The existence of such a
matching easily follows by matching the special agent ai to
h2k+1, any agent aj with j < i to hj and any agent aj with
j > i to hj−1. This is a valid matching and matches exactly

k agents to their first choice, namely all agents with an odd
index that is smaller than i and all agents with an even index
that is larger than i, k to their second choice and ai to their
third choice, thus being rank-maximal. For an example of
this construction, we refer to Figure 2.

Hence, the optimal algorithm can ask 2 queries to each
non-special agent and 3 queries to the special agent and can
thus elicit an NRM matching. An adversary on the other
hand can simply reveal other houses than h2k+1 when asked
for the third house of any agent until the last agent is asked.
Thus, any online algorithm needs to ask every agent at least
3 queries.

Therefore, the competitive ratio of any online algorithm
has to be at least 3(2k+1)

2(2k+1)+1 = 3
2 −

3
8k+6 and thus we get

that no online algorithm can be 3
2 − ε-competitive for any

ε > 0.

With some slight adjustments to the adversary, the same
construction also works for the hybrid-query and set-
compare model, thus also implying a lower bound of 3

2 in
both models.

Corollary 2. In both the set-compare and hybrid query
models, there is no online algorithm with a competitive ratio
of 3

2 − ε for any ε > 0.

We also construct an algorithm, which decides in poly-
nomial time whether a necessarily rank-maximal matching
exists, thus standing in contrast to the NP-hardness of the
same decision problem for Pareto optimal matchings.

Theorem 11. Given partial preferences rank′ in the hybrid-
query model, it can be decided in polynomial time whether
a necessarily rank-maximal matching exists and whether a
given matching M is necessarily rank-maximal.

Finally, we modify Algorithm 2 to get an algorithm with
a constant competitive ratio in the hybrid-query model.

Theorem 12. There exists a 6-competitive algorithm for
eliciting a rank-maximal matching in the hybrid query
model.

However, we were not able to find an online algorithm
for the set-compare setting achieving a sublinear competitive
ratio for eliciting a rank-maximal matching.

5 Discussion
There are multiple open questions and possible future re-
search directions which can be derived from this work.

Firstly, there are still gaps left between the upper bounds
and lower bounds we showed in this paper. Most impor-
tantly, it would be very interesting to find out whether there
is an algorithm with a constant (or even sublinear) competi-
tive ratio for eliciting an NRM matching in the set-compare
model. Besides this, the complexity of determining whether
a matching is NRM is also open in the set-compare model.

Secondly, there are several other notions of optimal-
ity left to explore, for instance (Huang et al. 2016) fair
matchings or the general class of profile-based matchings
(Kwanashie et al. 2014) encompassing both fair and rank-
maximal matchings. Of course, it might also be interesting



to study further querying models or models of partial pref-
erences.
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A Missing proofs
Before giving the missing proofs of the theorems from the
main body of work, we give a proof sketch that serial dic-
tatorship mechanism can be efficiently simulated in the set-
compare model, even if the size of the sets one can query is
upper bounded. We define the set-compare-k query model,
as the set-compare query model with the additional require-
ment that for any query Q(a,H ′) it has to hold that |H ′| ≤
k.

Proposition 1. For any k > 2 there is a 1-competitive al-
gorithm in the set-compare-k query model for eliciting an
NPO matching.

Proof Sketch. We again iteratively simulate the serial dicta-
torship mechanism. We start off by setting M = ∅. Then in
iteration i, we can find the unmatched house agent ai ranks
the highest using d n−ik−1e-queries, by at first choosing an ar-
bitrary subset of size k, asking ai for their top-choice in this
subset, then taking k − 1 other unmatched houses, together
with the previous top-choice and so on. The final output of
this is guaranteed to be the highest ranked, unmatched house
of ai. We can thus add this house and ai to M in accordance
with the serial dictatorship mechanism. Further, we note that
we can also generalize Lemma 1 to the set-compare setting.
Thus, for the optimal algorithm there also has to be a permu-
tation of the agents σ such that the resulting matching of the
optimal algorithm M ′ is the result of the serial dictatorship
mechanism on any preference extension and σ. Thus, agent
σ(1) must rank M(σ(1)) better than all other houses, σ(2)
must rank M(σ(2)) better than all other houses except for
M(σ(1)) and so on. It is therefore easy to see that agent σ(i)
must have been asked at least d n−ik−1e queries, hence showing
that our algorithm is 1-competitive.

We note that this is only a proof sketch, with the result not
being part of the main work. We defer a proper study of this
setting, also with regard to rank-maximality, to future work.

Following this, we give the proofs of the remaining miss-
ing theorems from the main body of the paper.

Theorem 4. Given partial preferences rank′ in the hybrid-
query model it is NP-complete to determine whether an
NPO matching exists.

Proof. To show membership in NP we observe that the
problem of checking whether a matching is NPO is solv-
able in polynomial time, as shown in Theorem 3. Thus any
NPO matching M is enough as a polynomial size witness
and thus the problem is in NP. For our reduction, we re-
duce from (2,2)-E3-SAT. Let X = {x1, . . . , xn} be the set
of variables and C = {C1, . . . , Cm} be the set of clauses in
our (2,2)-E3-SAT instance. Each variable xi ∈ X appears
in exactly two clauses in negative form and two clauses in
positive form. We assume that we have some ordering over
these clauses such that we can identify one of the clauses
as being the first clause xi (or xi respectively) and the other
one as the second one xi appears in.

In our reduction, we create the following houses:



• for each variable xi ∈ X we create two selection houses
s1i and s2i . Further, we create two positive variable houses
h1i and h2i and two negative variable houses h

1

i and h
2

i .
If C is the clause xi appears in the first time, we say that
h1i belongs to C and similarly h2i belongs to C if C is the
second clause xi appears in. The equivalent notation is
also used for xi with the negative variable houses.

• for each clause C ∈ C we add a clause house hC ;
• we add 2

3n+ 2 dummy houses d1, . . . , d 2
3n
, d, and d′.

Note that due to the nature of our problem 3m = 4n holds
and therefore the total number of houses is 6n+m+ 2

3n+

2 = 6n + 4
3n + 2

3n + 2 = 8n + 2. Next we come to the
agents and their revealed preferences.

• For each variable xi ∈ X we add four agents, two
positive agents x1i and x2i and two negative agents
x1i and x2i . The positive agent x1i has revealed that
rank′(x1i , s

1
i ) = 1, rank′(x1i , s

2
i ) = 2, rank′(x1i , h

1
i ) =

4, rank′(x1i , h
2
i ) = 5. Further, for each other house ex-

cept for h
1

i and h
2

i the agent has a revealed rank between
6 and 8n + 1, with variable houses being ranked before
dummy houses and dummy houses before clause houses.
The internal ranking in these house classes is arbitrary,
except that we require every house from d1, . . . , d 2

3n
to

be before d and d′. Therefore, the only unrevealed ranks
are 3 and 8n + 2 and the only unrevealed houses are h

1

i

and h
2

i . The revealed preferences for the second positive
agent x2i are the same. For x1i and x2i we have the same
preferences, except that they have h1i and h2i unrevealed
and h

1

i and h
2

i revealed.
• Next, for each clause C ∈ C we add three agents C1, C2,

and C3. Let h1, h2, and h3 be the three variables houses
belonging to C. Then we assume that the three agents
have revealed their top 2

3n + 4 ranks such that that they
induce the preferences

C1 : h1 � h2 � h3 � hC � d1 � · · · � d 2
3n

C2 : h2 � h3 � h1 � hC � d1 � · · · � d 2
3n

C3 : h3 � h1 � h2 � hC � d1 � · · · � d 2
3n

with the preferences over all other houses being unre-
vealed.

• Finally, we add two dummy agents a1d, a
2
d who have re-

vealed rank such that the preference list from position m
to 8n + 1 is d � d′ � h11 � h

1

1 � s11 · · · � h
2

n � s1n �
s2n � d1 � · · · � d 2

3n
. Thus, the only unrevealed houses

of a1d and a2d are the clause houses, one of which is listed
last while the other m − 1 clause houses are a prefix of
the preference list.

Note, that there are 4n + 3m + 2 = 8n + 2 agents, thus
fulfilling the condition that the number of agents and houses
is the same.

⇒ First, we assume that our (2,2)-E3-SAT instance is sat-
isfiable and that Φ is a satisfying assignment. We now show

how to construct an ordering of the agents, such that the se-
rial dictatorship method with regard to that ordering is con-
sistent with any possible preference completion. First, for
any variable xi if xi appears in Φ, our serial dictatorship
mechanism asks x1i and then x2i (who get matched to s1i and
s2i ), followed by the clause agents who rank h

1

i and h
2

i first.
Afterwards, we ask x1i and x2i to pick their top choice, which
is h1i and h2i regardless of the preference completion. Now,
since Φ is a satisfying assignment, for any clause C there
has to be at least one agent Cj who is currently unmatched.
This is due to the fact that the only clause houses matched,
are matched to variable houses, belonging to variables not
in Φ. For these clause houses, the top-choice which is not
matched yet is guaranteed to be hC , since all the variable
houses are matched. We can therefore ask a clause agent to
be matched to their corresponding clause house. Finally, we
can match the remaining clause agents to dummy agents and
the dummy agents to d and d′, since all clause houses are
matched. Since this is a serial dictatorship order that works
for any completion of the preferences, the matching is guar-
anteed to be NPO.

⇐ Let M be an NPO matching. First, assume that
M(a1d) 6= d and M(a1d) 6= d′. We will distinguish two cases
based on the houses ad could be matched to.

• If a1d is matched to a clause house hC , there is a comple-
tion such that hC is ranked last by a1d and first by a2d, thus
implying that they form a cycle.

• If a1d is matched to either a selection, dummy, or vari-
able house, then every preference list except for ad2 can
be completed in such a way that the house matched to a1d
is in front of d and d′ in each preference list. Therefore,
there needs to be a cycle containing a1d and another agent
with both preferring the partner house of the other.

Due to a2d having the same revealed preferences as a1d this
also implies that a2d is matched to either d or d′.

Next, we assume that there is any variable agent matched
to a clause house. However, then this variable agent would
prefer d and d′ to their current house, while the preferences
of a1d could be completed to prefer the clause house to d and
d′ thus inducing a cycle. Thus, we know that every clause
house must be matched to a clause agent. Let C,C ′ ∈ C
be two distinct clauses and assume that Cj for some j ∈
[3] is matched to hC′ . Since hC′ as well as d and d′ are
unrevealed byCj and since the dummy agent a1d could prefer
hC′ to d and d′ we know that Cj cannot be matched to hC′
in any NPO matching. Therefore, for any clauseC ∈ C there
needs to be one agent Cj with M(Cj) = hCj . This however
implies that at least one variable agent corresponding to a
variable from Cj must be matched to their corresponding
variable houses. Since the negative houses could be ranked
last by any positive agent and vice versa, this implies that
this agent matched to a variable house must be positive if the
variable house is positive and negative if the variable house
is negative.

Let Φ be the assignment setting all variables to true for
which a positive agent is matched to a variable house and all
variables to false for which a negative agent is matched to a



variable house. To show that this is a valid definition, assume
that there is some variable xi for which both a negative and
a positive agent are matched to a variable house. Then it
is easy to see that the preferences of both agents could be
completed in such a way that both agents prefer each other’s
house to their own. Thus, Φ is a valid assignment. Moreover,
we know that for each clause, there is at least one agent, who
is also positive if and only if the house is positive, matched
to this variable house. Thus, each clause is fulfilled by at
least one variable from Φ and the (2,2)-E3-SAT instance is
satisfiable.

Theorem 5. Given partial preferences �′ in the set-
compare model, it is NP-complete to determine whether a
necessarily Pareto-optimal matching exists.

Proof. For this, we give a simple reduction from the prob-
lem of determining whether an NPO matching exists in the
hybrid-query setting. Assume that we are given partial pref-
erences rank′ in the hybrid-query model. For a given agent
a ∈ A we call a revealed house h ∈ H a prefix house of a, if
all ranks from 1 to rank(a, h) are revealed. It is easy to see
that no unrevealed house can be ranked better than a prefix
house, while all unranked houses could be ranked better than
a non-prefix house.

For our reduction, we now create partial preferences�′ in
the set-compare model, by taking the partial order for each
agent which ranks

• every prefix house better than every unrevealed house
and every house with a worse rank;

• every revealed non prefix house better than every re-
vealed house with a worse rank.

Now assume we are given a matching M . We show that
M is NPO in the hybrid-query preferences if and only if M
is NPO in the constructed set-compare preferences.

First, assume that M is not necessarily Pareto opti-
mal in the hybrid-query preferences. Then there is a cy-
cle a1, . . . , ak = a1 with agent ai preferring M(ai+1) to
M(ai) in some preference extension of rank′. Therefore,
we know that M(ai) �′i M(ai+1) does not hold in �′.
Since �′i is a partial order, we can extend �′i to �i in
such a way that M(ai+1) �i M(ai). By doing this for all
agents, we see that M is also not necessarily Pareto opti-
mal in �′. Similarly, if M is not NPO in �′ there is some
cycle a1, . . . , ak = a1 with agent ai preferring M(ai+1)
to M(ai) in some preference extension of �′. Thus, for
each agent ai on the cycle there is some extension of rank′

with rank′(ai,M(ai)) ≥ rank′(ai,M(ai+1)) which in turn
shows that M is also not NPO for rank′.

Thus, we can reduce to the problem of determining
whether a matching is NPO in the set-compare model and
hence this problem is NP-complete as well.

Lemma 3. The series (cj)j∈N with cj+1 = (3cj + 1)/2 +
c0 − 1 is increasing if c0 > 1

3 .

Proof. We show this by induction. Let j > 0 be given and
assume that cj > 1

3 . Further, let ε = 1
3 − c0. Then,

cj+1 =
3cj + 1

2
+ c0 − 1 = cj +

cj + 1

2
+

1

3
+ ε− 1

≥ cj +
2

3
+

1

3
+ ε− 1 = cj + ε.

Thus, it holds that cj+1 ≥ cj + ε and the sequence is mono-
tonically increasing.

Theorem 6. For any c > 1
3 Algorithm 1 is an O(nc0)-

competitive algorithm for eliciting a necessarily Pareto op-
timal matching in the hybrid-query model.

Proof. To show this bound, let (A,H,�) be a given house
allocation instance.

First, we observe that the matching M is indeed Pareto
optimal. For this, let A′ be the set of agents matched in the
first ’for loop’. Since M is Pareto optimal when restricted to
A′, there is some permutation σ′ ofA′ such that SD�(σ′) =
M when restricted to A′. We now create a permutation σ of
A by first copying σ′ and for any j ∈ [|A′|, n] setting σ(j)
to be the agent matched the jth time by our algorithm. Now,
running the serial dictatorship mechanism on σ results in any
agent in A′ being matched to their respective partner in M ,
due to σ consisting of σ′. Further, Algorithm 1 matches any
agent in the second for loop to the unmatched house they
prefer the most, thus resulting in SD�(σ) = M .

We show that Algorithm 1 is O(nc0)-competitive by con-
sidering the maximum value of j.

• As our base case, if the maximum value of j is 0, we
get that for i = dnc0e we have that |M | ≥ n −⌈
n(cj+1)/2

⌉
, and our algorithm at most takes ndnc0e +⌈

n(c0+1)/2
⌉ ⌈
n(c0+1)/2

⌉
∈ O(n1+c0) queries. Since the

optimal algorithm uses at least n − 1 queries, the com-
petitive ratio in this case is in O(nc0).

• Now assume that the maximum value j takes is at least
1 (and let j be this maximum value) and that the for
loop breaks. Then for i = dncj−1e we know that M <
n −

⌈
n(cj−1+1)/2

⌉
. Thus, at least

⌈
n(cj−1+1)/2

⌉
agents

are matched to a house with a rank worse than dncj−1e
for any NPO matching.
Let M ′ be the NPO matching produced by the optimal
algorithm with partial preferences rank′ and σ the cor-
responding permutation of A such that SD�′(σ) = M ′

for all extensions �′ of rank′. By definition of the se-
rial dictatorship mechanism it is easy to see that for any
i ∈ [n] and a ∈ A we have that σ(i) = a implies
rank(a,M ′(a)) ≤ i. Therefore, and by the fact that⌈
n(cj−1+1)/2

⌉
≥ dncj−1e, we get that

min(rank(a,M ′(a)), n− σ−1(a)) ≥ 1

2
dncj−1e

for at least 1
2

⌈
n(cj−1+1)/2

⌉
many agents, since σ−1(a) ≤

n − 1
2

⌈
n(cj−1+1)/2

⌉
for at least 1

2

⌈
n(cj−1+1)/2

⌉
many

a ∈ A with rank(a,M ′(a)) ≥ dncj−1e. Thus, by
Lemma 2 the optimal algorithm needs at least

Ω
(⌈
n(cj−1+1)/2

⌉
dncj−1e

)
∈ Ω

(
n(3cj−1+1)/2

)



queries. Since our algorithm uses

O(nncj + n(cj+1)/2n(cj+1)/2) = O(ncj+1) =

O(n1+(3cj−1+1)/2+c0−1) = O(n(3cj−1+1)/2nc0)

queries, we get a competitive ratio ofO(nc0) in this case.
• Finally, if the for loop never breaks, we know that our

algorithm uses O(n2) many queries. Further, we can as-
sume that nco−

1
3 ≥ 2 and nc0 ≥ 1 since we are only

dealing with asymptotics. Then following the calcula-
tions of Lemma 3 we get that

dncj+1e ≥ dncj+c0− 1
3 e

≥ d2ncje > dncje+ 1.

Therefore, the sequence (dncje)j∈N is monotonically in-
creasing as well. Further, we know that for the maximum
j it has to hold that (3cj−1 + 1)/2 + c0 − 1 > 1 since
the sequence is monotonically increasing by Lemma 3
and otherwise the algorithm would enter the case for
i = n1. This implies that c0 > 2− (3cj−1 +1)/2. By the
same argument as in the last case, we can lower bound
the number of queries asked by the optimal algorithm
by Ω

(
n(3cj−1+1)/2

)
and thus get a competitive ratio of

O(n2−(3cj−1+1)/2) ∈ O(nc0).

Theorem 7. There is no online algorithm in the hybrid-
query model for computing a necessarily Pareto optimal
matching with a competitive ratio of o(n

1
3 ).

Proof. For this, we construct a family of instances such
that any correct online algorithm must ask at least Ω(nn

1
3 )

queries, while an optimal offline algorithm can do it using
O(n) queries. For simplicity, we assume that n

1
3 is an inte-

ger. We divide the set of agents into three sets

• a set of first-choice agents A1, consisting of n − 2n
2
3

agents,
• a set of second-choice agentsA2 consisting of n

2
3 agents,

• and a set of special agents A′ of size n
2
3 .

Similarly, we also divide our set of houses into a set of first-
choice houses H1 of size n−n 2

3 and a set of special houses
H2 of size n

2
3 . The preferences of the first-choice agents are

such that each first-choice agent has a unique first-choice
house as their first-choice and lists all special houses at the
end of their preference list with the rest of their preference
list being completed arbitrarily. Every special agent also has
a unique first-choice house as their first choice and lists a
special house somewhere in their first n

1
3 preferences. All

other special houses are listed in last n
2
3 as well. Finally,

all second-choice agents, share their first-house with some
other agent and list the first choice of a unique special agent
somewhere in their first n

1
3 preferences. Our family of in-

stances now consist of all preferences inducing such profiles.
Our adversary now works as follows:

• For any agent asked to reveal their first-choice house, we
just reveal consistently any ’first-choice’ house that has
not been revealed twice yet.

• For any agent asked to reveal a house in their first n
1
3

preferences, we always reveal a first-choice house while
still possible.

• For any agent asked to reveal the rank of a special house,
we always return the lowest consistent rank in the last n

2
3

ranks, while this is still possible.
• The rest of the preferences are revealed consistently.

We claim that any online algorithm working against this ad-
versary must ask at least Ω(nn

1
3 ) queries. Let A′ be the set

of agents matched to special houses. For any a′ ∈ A′ there
are now two possibilities. If a′ ∈ A2, so a2 is a special agent,
and a′ is matched to one of their first n

1
3 choices, then we

know that these preferences could not be completed con-
sistently by placing the agent in the last n

2
3 houses of a′.

Thus, this agent could not have been a first-choice agent.
This, however, easily implies that each first choice agent
must have been asked at least n

1
3 queries, since otherwise

the preferences could be consistently completed with that
agent being a special agent. Hence, this would already im-
ply that our online algorithm asked Ω(n

4
3 ) queries.

Therefore, the only choice remaining is all special houses
being matched to agents who list them in their last n

2
3 pref-

erences. Thus, using Lemma 2 we can deduce that any on-
line algorithm must have asked at least 1

2n
2
3 queries to at

least 1
2n

2
3 of them, therefore also implying that any online

algorithm must ask at least Ω(n1+
1
3 ) queries in this case. An

algorithm having access to all preferences on the other hand
can ask any top-choice agent for their top-choice, any special
agent until it reaches the special house of this agent and any
second-choice agent until it reaches the unique top-choice
house of a special agent in ranks in the top n

1
3 houses. Af-

ter this the preferences are top-k preferences and a matching
of size n is possible. By Hosseini et al. (2021) this implies
that an NPO matching exists. Since it can be found using
O(n+n

1
3n

2
3 ) = O(n) queries, this shows that no algorithm

can be o(n
1
3 )-competitive.

Theorem 9. Algorithm 2 is a 3
2 -competitive algorithm for

eliciting a rank-maximal matching in the next-best query
model.

Proof. To see that the matching M computed by Algo-
rithm 2 is indeed rank-maximal, we observe that the graph
(A∪H,E) after finishing the elicitation step in iteration i is
equivalent to the graph Gi. Every agent only elicits prefer-
ences until they are in either U or O which is equivalent to
the deletion of all preferences of a higher rank. Further, by
deleting all edges between O,O and O,U and by adding
them to F we ensure that these edges cannot be used or
added to the graph. Finally, removing houses from V once
they are in U or O is again equivalent to the deletion step
in the original algorithm. Thus, by Lemma 4 the match-
ing M is rank-maximal. To show that the algorithm is also



3
2 -competitive, we show that almost all agents need to be
queried until they would be a part of either U or O in the
decomposition. In Lemma 5 we have already shown that no
agent a ∈ A matched to a revealed preference can have less
than ra − 1 of their preference revealed.

Now we turn to agents matched to an agent they have not
revealed yet 1. Let M ′ be any NRM matching with corre-
sponding partial preferences and a ∈ A an agent matched to
a house they have not revealed yet. Now, if either M ′(a) /∈
rev(a′) or rank(a′,M ′(a)) 6= n for any a′ ∈ A, we can get
a matching that dominates M ′ in an extension of the pref-
erences by matching a to M ′(a′) and a′ to M ′(a). Thus,
rank(a′,M ′(a)) = n has to hold for any a′ ∈ A \ {a}.
Thus, any optimal algorithm leaving matching an agent to a
preference this agent has not revealed yet has to ask (n−1)2

queries. On the other hand, we know that our algorithm asks
at most n(n − 1) queries. Thus, in this special case, we get
an upper bound on the competitive ratio of n(n−1)

(n−1)2 = n
n−1 .

Since our algorithm is 1-competitive for n ≤ 2 this im-
plies a competitiveness of n

n−1 ≤
3
2 if the optimal algorithm

matches an agent to an unqueried house.
Therefore, we can now assume that |rev(a)| ≥ max(ra−

1, 1) for all a ∈ A. Finally, for h ∈ H let Ah := {a ∈ A |
rank(a, h) = 1}. It is easy to see that for n > 2, there need
to be at least 2|Ah| − 1 queries to agents in Ah, since oth-
erwise there would be two agents with only their first agent
revealed, which would be a contradiction to every agent only
being matched to a revealed preference. Of course, this also
holds for any non-empty subset ofAh. Now let OPT(A′) be
the number of queries asked to agents in the set A′ ⊆ A. We
thus get that for any h ∈ H and A′ ⊆ Ah it has to hold that

OPT(A′) ≥ max(
∑
a∈A′

(max(ra − 1, 1)), 2|A′| − 1)

Since our algorithm asks∑
a∈A

ra =
∑
h∈H

∑
a∈Ah

ra

queries we get that the competitive ratio is at most∑
h∈H

∑
a∈Ah

ra∑
h∈H OPT(Ah)

.

By using the fact that for all a, b, c, d ∈ R>0 it holds that

a+ b

c+ d
≤ max(

a

c
,
b

d
)

we thus get an upper bound of

max
h∈H

∑
a∈Ah

ra

OPT(Ah)

on the competitive ratio. For any h ∈ H we can now distin-

1Note that for these agents Lemma 5 does not hold. It is easy to
construct an instance, where an agent with no revealed preferences
is matched to their last choice.

guish two cases. If
∑

a∈Ah
ra ≥ 3|Ah| we get∑

a∈Ah
ra

OPT(Ah)
≤

∑
a∈Ah

ra

max(
∑

a∈Ah
(max(ra − 1, 1)), 2|Ah| − 1)

≤
∑

a∈Ah
ra∑

a∈Ah
(max(ra − 1, 1))

≤
∑

a∈Ah
ra∑

a∈Ah
ra − |Ah|

≤
∑

a∈Ah
ra∑

a∈Ah
ra − 1

3

∑
a∈Ah

ra
=

∑
a∈Ah

ra
2
3

∑
a∈Ah

ra
=

3

2
.

If
∑

a∈Ah
ra < 3|Ah| there must be at least one a ∈ Ah

with ra = 2. Let A2
h be this subset. If |A2

h| ≥ 2 we can see
that ∑

a∈Ah
ra

OPT(Ah)
=

∑
a∈Ah\A2

h
ra + 2|A2

h|
OPT(Ah \A2

h) + OPT(A2
h)

≤ max(

∑
a∈Ah\A2

h
ra∑

a∈Ah\A2
h
ra − |Ah \A2

h|
,

2|A2
h|

2|A2
h| − 1

) ≤ 3

2

since we know that
∑

a∈Ah\A2
h
ra ≥ 3|Ah\A2

h|. If, however
|A2

h| = 1, then there must be exactly one a ∈ Ah with
ra = 2. This implies that either a ∈ O2 or a ∈ U2. Since
all other agents in Ah are in E2 this shows that h /∈ E2.
Therefore, Gn contains no edge between a and h and any
rank-maximal matching matches a to their second ranked
house. However, then the optimal algorithm must have asked
two queries to agent a and therefore we get an upper bound
on the competitive ratio of∑

a∈Ah
ra

max(
∑

a∈Ah
(max(ra − 1, 1)), 2|Ah| − 1)

≤ 3|Ah| − 1

2|Ah|
≤ 3

2
.

Thus our algorithm correctly elicits a necessarily rank-
maximal matching with a competitive ratio of 3

2 .

Corollary 2. In both the set-compare and hybrid query
models, there is no online algorithm with a competitive ratio
of 3

2 − ε for any ε > 0.

Proof.

Hybrid-query model. We begin with the hybrid query
model and take the same preference structure as in the proof
of Theorem 10, i.e., at the family of preferences isomor-
phic to the preference structure in the proof. However, in this
case, we need to change the elicitation of the preferences by
our adversary slightly. When asked for a first-choice house,
we still reveal the preferences according to the basic prefer-
ences and when asked for the third preference or the rank of
the special house we can either return any first-choice house
or the last rank for this special house until the last agent
queried.

For the second-choice houses, however, we need to adjust
the adversary. For i ∈ [k−1] we call the agents a2i−1 and a2i
the block Ai and similarly the agents a2k−1, a2k, and a2k+1

form the block Ak. Based on the total preferences, we see



that the agents in block Ai share their second choice agents
with blocks Ai−1 and Ai+1 with indices taken modulo k.

While eliciting preferences, we call two blocksAi andAj

neighboring if they share a second-choice house. It is easy to
see that any way of answering the queries for second-choice
houses such that the blocks form a cycle of length n based
on the neighborhood relation leads to a preference profile
isomorphic to the one specified in Theorem 10. In order to
use this, until the final preference of the agents is revealed, if
any agent is queried for their second choice agent, the adver-
sary first checks if there is any second-choice house revealed
by an agent in a block not reachable by the neighborhood re-
lation. If this is the case, we can safely return this agent as
the second-choice. If none such agent exists, we return any
second-choice agent, not queried before. For the final agent
revealing their second-choice agent, there is only one choice
left, which we reveal.

This model of eliciting preferences leads to a cycle of
blocks as described above, and thus to preferences isomor-
phic to the ones described in Theorem 10. Further, ev-
ery second-choice agent needs to appear at least once as a
second-choice agent for any matching to be NRM.

Now assume that the blocks do not form a path accord-
ing to the neighbor relation. Then either one second-choice
houses is still unrevealed or the last query to an agent would
be able to reveal a second-choice house in a different con-
nected component according to the neighbor relation, since
these two blocks cannot reach each other. Thus, since the
blocks need to form a path, we need to reveal two second-
choice houses for at least k−2 blocks. Thus, we need to ask
at least 2k− 4 second-choice queries. Since we also need to
query every first and every third choice, this leads to a com-
petitive ratio of at least 2k−4+2(2k+1)

2(2k+1)+1 = 3
2 −

13
8k+6 . Thus,

also no algorithm can be 3
2 − ε-competitive for the hybrid-

query model.

Set-compare model. The same construction also works in
the set-compare model. If an agent ai is asked for their best-
choice of a set containing all houses (or their top-choice
house), we simply return their top-choice house. If asked
for their best-choice out of a set only not containing their
top-choice house i.e., their second choice house, we reveal
the preferences according to the construction in the hybrid-
query model. Finally, if asked to reveal their best-choice out
of a smaller set not containing their first or second choice we
simply reveal any house that is not the special house until all
agents have been queried for the special house at least once.

Since we need to know the top-choice of every agent we
need to ask every agent for their best-choice. Further, since
we need to reveal every second-choice agent at least once as
the best-choice out of a set, we need to ask at least 2k − 4
queries as previously shown. Finally, we need to ask every
agent at least one query containing neither their first and sec-
ond choice, but the special house. Thus, the competitive ratio
is also lower bounded by 3

2 −
13

8k+6 in this case.

Theorem 11. Given partial preferences rank′ in the hybrid-
query model, it can be decided in polynomial time whether

Algorithm 3: Elicitation algorithm for rank-maximal match-
ings in the hybrid-query model
Input: Set of agents A, set of houses H .
Output: A necessarily rank-maximal matching

1: U ← A {set of unfinished agents}
2: V ← H {set of available houses}
3: E ← ∅, M ← ∅, F ← ∅
4: if |A| = 2 then
5: let h1 = Q(a1, 1), return {{a1, h1}, {a2, h2}}
6: end if
7: for i in 1, . . . n− 1 do
8: for all a ∈ U do
9: h← Q(a, i)

10: if h ∈ V and {a, h} /∈ F then
11: E ← E ∪ {{a, h}}
12: end if
13: end for
14: augmentM to be a maximum matching in (A∪H,E)

15: if M matches no house of rank i then
16: c← c+ 1
17: end if
18: if c ≥ |V | then
19: break for-loop
20: end if
21: compute Dulmage-Mendelsohn decomposition

U , E ,O for M
22: If an agent a ∈ A is in U or O remove a from U
23: If a house h ∈ H is in U or O remove h from V
24: Add any edges between O,O and O,U to F and re-

move them from E
25: end for
26: if U 6= ∅ then
27: for all h ∈ V, a ∈ U do
28: query Q(a, h)
29: end for
30: compute rank-maximal matching M with completed

preferences
31: end if
32: return M

a necessarily rank-maximal matching exists and whether a
given matching M is necessarily rank-maximal.

Proof. In order to show this, we provide a short neces-
sary condition of necessarily rank-maximal matchings, pro-
vided that one exists. Given partial preferences in the hy-
brid query model, for an agent a ∈ A let `a be the last
rank with no revealed house and ka be the first rank with
no revealed house. Then we define max rank(a, h) to be
rank(a, h) if h ∈ rev(a) and max rank(a, h) = `a oth-
erwise, i.e., max rank(a, h) is the worst possible rank of h
for a in any possible completion. We now show that if an
NRM matching M exists it is rank-maximal in the instance
(A,H,max rank).

Assume that M is indeed NRM and that there is a match-
ing M ′ rank-dominating M in (A,H,max rank). Then we
extend the preferences, by setting rank(a,M(a)) = `a



for all a ∈ A and by extending all other preferences in
any consistent manner. The signature of M under rank and
max rank is the same, while the signature ofM ′ under rank
is guaranteed to be at least as large as under max rank. Thus,
M ′ also rank-dominates M under rank and M is not NRM.

For our next step let (E1,O1,U1), . . . , (En,On,Un)
be the Dulmange-Mendelsohn decompositions of
(A,H,max rank). Let a ∈ A be an agent and h /∈ rev(a).
If either a /∈ E`a−1 or h /∈ E`a−1 then we know that no
rank-maximal matching in (A,H,max rank) and thus
also no NRM matching can match a and h. On the other
hand, assume that a ∈ E`a−1 and h ∈ E`a−1. Then we can
extend the preferences in such a way that rank(a, h) = ka
and for all other a′ ∈ A with h /∈ rev(a) it holds that
rank(a′, h) = `a′ . Under these preferences a ∈ Eka−1
and h ∈ Eka−1 still hold. Further, if there was another
a′ ∈ Eka−1 with rank(a′, h) = ka this would have implied
that h /∈ E`a−1, since we only decreased the ranks of the
other agents and since ` − 1 ≥ ka. Hence, a, h ∈ Uka

has
to hold and they have to be matched. Therefore, an agent a
is matched to an unrevealed agent h in an NRM matching if
and only if a ∈ E`a−1 and h ∈ E`a−1. Thus, it is sufficient
to calculate the Dulmange-Mendelsohn decompositions of
(A,H,max rank), match all agents a ∈ A to unrevealed
houses h ∈ H if a ∈ E`a−1 and h ∈ E`a−1 and then
calculate a rank-maximal matching in the instance without
the already matched agents and houses. Afterwards, we
check if this matching is indeed NRM and return it if it is,
otherwise we return that no NRM matching exists.

If there is no NRM matching this is indeed correct. Oth-
erwise, assume that an NRM matching M ′ exists and let M
be the matching returned by our algorithm. By our previous
proof, we know that the agents matched to unrevealed pref-
erences by M ′ and M are the same. Further, for any other
preference extension, the signature over the agents matched
to revealed preferences is obviously the same, since M is
rank-maximal on these agents. Thus M ′ and M have the
same signature for all possible preference extensions and
therefore M is NRM.

Before turning to the correctness proof of Algorithm 3 we
show a few auxiliary lemmas for the hybrid query model.
For a given preference profile � and an NRM matching M
with partial preferences rank′ of�, we call an agent a ∈ A a
prefix agent, if the ranks 1 to ra−1 are all revealed for rank.
Similarly, we call all other agents non-prefix agents. We can
show that all houses not ranked by a non-prefix agent a can
be guaranteed to be matched to an agent that rank them at
most at rank ka, i.e., the first rank for which agent a has not
revealed a house yet.

Lemma 6. Let a ∈ A be a non prefix agent. Then for any
house h /∈ rev(a) with h 6= M(a) there exists a k ≤ ka with
h /∈ Ek.

Proof. Assume that there is a h /∈ rev(a) with h ∈ Ek for
every k ≤ ka and assume that the preferences are com-
pleted such that rank(a, h) = ka, i.e., the smallest unre-
vealed rank, with all other preferences consistent with �.

Since a, h ∈ Ei for any i < ka there must exist an edge be-
tween a and h in Gka . However, since h ∈ Eka , when only
looking at �, when h is not matched to a, there is an alter-
nating path from h to an unmatched house h′ not containing
a. Hence, we could augment this matching along this path
and by matching a to h. Thus, a had to be matched to h in
the first place.

Similarly, we can show that a non-prefix agent must reveal
a house for each rank matched by a rank-maximum match-
ing which is better than his own rank.

Lemma 7. Let a ∈ A be a non-prefix agent. Then for all
a′ ∈ A with rank(a′,M(a′)) < ra it has to either hold that
M(a′) ∈ rev(a) or for all r′ < rank(a′,M(a′)) there has
to be a h′ ∈ H with h′ ∈ rev(a) and rank(a, h′) = r′.

Proof. Assume that rank(a′,M(a′)) < ra and M(a′) /∈
|rev(a)|. Since M matches a′ to M(a′) we know that
M(a′) ∈ Er′ for all r′ < rank(a′,M(a′)). However, since
also a ∈ Er′ there cannot be an edge between a and M(a′)
in Gr′ in any preference completion and thus a must elicit
a preference with rank r′. Otherwise, a could elicit M(a′)
with rank r′.

Theorem 12. There exists a 6-competitive algorithm for
eliciting a rank-maximal matching in the hybrid query
model.

Proof. It is easy to see that the matching computed by Algo-
rithm 3 is indeed necessarily rank-maximal, since any agent
a /∈ U in line 26 will be in either U or O and will thus
be matched to a house they have already revealed. Further,
the only houses unrevealed by an agent a ∈ U in line 26 are
houses which are in U orO and can thus not be matched to a
in any rank-maximal matching by Lemma 4. Thus, the pref-
erences elicited in algorithm 3 are a superset of the edges
of Gn which by Lemma 4 implies that we correctly find a
necessarily rank-maximal matching.

Let OPT be the optimal algorithm and OPTP be the set
of prefix agents after the partial preferences were revealed
by OPT and OPTNP the non-prefix agents of OPT. Simi-
larly, let ALGP and ALGNP be the prefix and non-prefix
agents of our algorithm. For simplicity, we also let i and c
be the respective values of the variables at the end of our al-
gorithm. For any agent a ∈ A let OPTa be the number of
queries asked to a by an optimal algorithm and ALGa the
number of queries asked by our algorithm. Our goal is now
to bound ALGa

OPTa
≤ 6 for any agent, thus showing that the

competitive ratio is at most 6. Before doing this, we must
however discuss the case, where rev(a) = ∅ for some agent
a ∈ A. Firstly, assume that there is some a′ ∈ A with
rank(a′,M(a′) > 1. Then we can extend the preferences
in such a way that rank(a,M(a′) = 1 and the matching
is not NRM. Thus, it needs to hold that all agents except
for a are matched to their first choice. Further, similar to the
proof in Theorem 9 we must know that rank(a′,M(a)) = n
for all agents. Thus, any optimal algorithm must ask at least
2(n − 1) queries. Further, our algorithm asks every agent
one question and then queries a and the agent sharing the
first choice agent with a both exactly two queries. Since we



can assume that n ≥ 3 we get an upper bound on the com-
petitive ratio of n+4

2(n−1) ≤
7
4 ≤ 2.

Now we can assume that rev(a) 6= ∅ and distinguish four
cases:

• For any a ∈ A with a ∈ OPTP and a ∈ ALGP we know
that our algorithm asks at most ra queries to a while the
optimal algorithm asks at least ra− 1. Thus, the quotient
for a is upper bounded by

ALGa

OPTa
≤ ra
ra − 1

≤ 2

1
= 2.

• If a ∈ OPTP and a ∈ ALGNP we know that ra > i and
thus ra − 1 ≥ i ≥ c ≥ |V |. Thus, the quotient for a in
this case is upper bounded by

ALGa

OPTa
≤ i+ |V |

i
≤ 1 +

|V |
|V |

= 2.

• Next, assume that a ∈ OPTNP and a ∈ ALGP . Then
we know that in iteration i = ra it has to hold that c ≤
|V |. By Lemma 6 we know that all but one house not in
Ura and Ora , i.e., in V , need to be queried by a in the
optimal algorithm. Similarly, by Lemma 7 we know that
at most c+1 ranks before ra can be unqueried, namely all
ranks r′ without any agent a′ such that rank(a′,M(a′))
as well as the largest r′ such that such an a′ exists. Since
no house with a rank smaller than ra can belong to Era
we get OPTa ≥ ra−c+ |V |−2 ≥ ra−2+c−c. Thus,
we get an upper bound on the quotient of

ALGa

OPTa
≤ ra
ra − 2

≤ 3

since we know that at least one query is asked to a.
• Finally, the case of a ∈ OPTNP and a ∈ ALGNP re-

mains. Let pa be the length of the prefix of the prefer-
ences queried by the optimal algorithm.
If pa > i, we get that a gets asked at least i ≥ |V |
queries by the optimal algorithm. Since our algorithm
asks at most i + |V | queries, this implies a quotient of
2.
If pa ≤ i, then we know by Lemma 6 that the optimal
algorithm must ask at least |V | + pa − 1 queries to a. If
pa = i, this implies a quotient of

ALGa

OPTa
≤ i+ |V |
|V |+ pa − 1

=
i+ |V |

i+ |V | − 1
≤ 2.

If pa < i, we know that every but one house in V must
be queried by the optimal algorithm and at most ci−1 +
1 ≤ |V | + 1 ranks can be left unqueried by the optimal
algorithm, thus leading to a quotient of at most

ALGa

OPTa
≤ i+ |V |

(|V | − 1) + (i− |V | − 1)
=
i+ |V |
i− 2

≤ 6

due to |V | ≤ c ≤ i and since we can assume that at least
one query has been asked to a.

Thus, the competitive ratio is at most 6.
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